NumPy教程
- NumPy 简介
- NumPy 安装
- NumPy Ndarray 对象
- NumPy 数据类型
- NumPy 数组属性
- NumPy 创建数组
- NumPy 从已有的数组创建数组
- NumPy 从数值范围创建数组
- NumPy 切片和索引
- NumPy 高级索引
- NumPy 广播(Broadcast)
- NumPy 迭代数组
- Numpy 数组操作
- NumPy 位运算
- NumPy 字符串函数
- NumPy 数学函数
- NumPy 算术函数
- NumPy 统计函数
- NumPy 排序、条件筛选函数
- NumPy 字节交换
- NumPy 副本和视图
- NumPy 矩阵库(Matrix)
- NumPy 线性代数
- NumPy IO
- NumPy Matplotlib
本章节我们将学习如何从已有的数组创建数组。
numpy.asarray
numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。
参数说明:
参数 | 描述 |
---|---|
a | 任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组 |
dtype | 数据类型,可选 |
order | 可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。 |
实例
将列表转换为 ndarray:
实例
import numpy as np x = [1,2,3] a = np.asarray(x) print (a)
输出结果为:
将元组转换为 ndarray:
实例
import numpy as np x = (1,2,3) a = np.asarray(x) print (a)
输出结果为:
将元组列表转换为 ndarray:
实例
import numpy as np x = [(1,2,3),(4,5)] a = np.asarray(x) print (a)
输出结果为:
设置了 dtype 参数:
实例
import numpy as np x = [1,2,3] a = np.asarray(x, dtype = float) print (a)
输出结果为:
numpy.frombuffer
numpy.frombuffer 用于实现动态数组。
numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。
注意:buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。
参数说明:
参数 | 描述 |
---|---|
buffer | 可以是任意对象,会以流的形式读入。 |
dtype | 返回数组的数据类型,可选 |
count | 读取的数据数量,默认为-1,读取所有数据。 |
offset | 读取的起始位置,默认为0。 |
Python3.x 实例
import numpy as np s = b'Hello World' a = np.frombuffer(s, dtype = 'S1') print (a)
输出结果为:
Python2.x 实例
import numpy as np s = 'Hello World' a = np.frombuffer(s, dtype = 'S1') print (a)
输出结果为:
numpy.fromiter
numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。
参数 | 描述 |
---|---|
iterable | 可迭代对象 |
dtype | 返回数组的数据类型 |
count | 读取的数据数量,默认为-1,读取所有数据 |
实例
import numpy as np # 使用 range 函数创建列表对象 list=range(5) it=iter(list) # 使用迭代器创建 ndarray x=np.fromiter(it, dtype=float) print(x)
输出结果为:
© 2025 Copyright: kuaikuaixuan.com
京ICP备14015652号-3
网址导航