NumPy教程
- NumPy 简介
- NumPy 安装
- NumPy Ndarray 对象
- NumPy 数据类型
- NumPy 数组属性
- NumPy 创建数组
- NumPy 从已有的数组创建数组
- NumPy 从数值范围创建数组
- NumPy 切片和索引
- NumPy 高级索引
- NumPy 广播(Broadcast)
- NumPy 迭代数组
- Numpy 数组操作
- NumPy 位运算
- NumPy 字符串函数
- NumPy 数学函数
- NumPy 算术函数
- NumPy 统计函数
- NumPy 排序、条件筛选函数
- NumPy 字节交换
- NumPy 副本和视图
- NumPy 矩阵库(Matrix)
- NumPy 线性代数
- NumPy IO
- NumPy Matplotlib
ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建。
numpy.empty
numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:
参数说明:
参数 | 描述 |
---|---|
shape | 数组形状 |
dtype | 数据类型,可选 |
order | 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。 |
下面是一个创建空数组的实例:
实例
import numpy as np x = np.empty([3,2], dtype = int) print (x)
输出结果为:
注意 − 数组元素为随机值,因为它们未初始化。
numpy.zeros
创建指定大小的数组,数组元素以 0 来填充:
参数说明:
参数 | 描述 |
---|---|
shape | 数组形状 |
dtype | 数据类型,可选 |
order | 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组 |
实例
import numpy as np # 默认为浮点数 x = np.zeros(5) print(x) # 设置类型为整数 y = np.zeros((5,), dtype = int) print(y) # 自定义类型 z = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')]) print(z)
输出结果为:
numpy.ones
创建指定形状的数组,数组元素以 1 来填充:
参数说明:
参数 | 描述 |
---|---|
shape | 数组形状 |
dtype | 数据类型,可选 |
order | 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组 |
实例
import numpy as np # 默认为浮点数 x = np.ones(5) print(x) # 自定义类型 x = np.ones([2,2], dtype = int) print(x)
输出结果为:
numpy.zeros_like
numpy.zeros_like 用于创建一个与给定数组具有相同形状的数组,数组元素以 0 来填充。
numpy.zeros 和 numpy.zeros_like 都是用于创建一个指定形状的数组,其中所有元素都是 0。
它们之间的区别在于:numpy.zeros 可以直接指定要创建的数组的形状,而 numpy.zeros_like 则是创建一个与给定数组具有相同形状的数组。
参数说明:
参数 | 描述 |
---|---|
a | 给定要创建相同形状的数组 |
dtype | 创建的数组的数据类型 |
order | 数组在内存中的存储顺序,可选值为 'C'(按行优先)或 'F'(按列优先),默认为 'K'(保留输入数组的存储顺序) |
subok | 是否允许返回子类,如果为 True,则返回一个子类对象,否则返回一个与 a 数组具有相同数据类型和存储顺序的数组 |
shape | 创建的数组的形状,如果不指定,则默认为 a 数组的形状。 |
创建一个与 arr 形状相同的,所有元素都为 0 的数组:
实例
import numpy as np # 创建一个 3x3 的二维数组 arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 创建一个与 arr 形状相同的,所有元素都为 0 的数组 zeros_arr = np.zeros_like(arr) print(zeros_arr)
输出结果为:
numpy.ones_like
numpy.ones_like 用于创建一个与给定数组具有相同形状的数组,数组元素以 1 来填充。
numpy.ones 和 numpy.ones_like 都是用于创建一个指定形状的数组,其中所有元素都是 1。
它们之间的区别在于:numpy.ones 可以直接指定要创建的数组的形状,而 numpy.ones_like 则是创建一个与给定数组具有相同形状的数组。
参数说明:
参数 | 描述 |
---|---|
a | 给定要创建相同形状的数组 |
dtype | 创建的数组的数据类型 |
order | 数组在内存中的存储顺序,可选值为 'C'(按行优先)或 'F'(按列优先),默认为 'K'(保留输入数组的存储顺序) |
subok | 是否允许返回子类,如果为 True,则返回一个子类对象,否则返回一个与 a 数组具有相同数据类型和存储顺序的数组 |
shape | 创建的数组的形状,如果不指定,则默认为 a 数组的形状。 |
创建一个与 arr 形状相同的,所有元素都为 1 的数组:
实例
import numpy as np # 创建一个 3x3 的二维数组 arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 创建一个与 arr 形状相同的,所有元素都为 1 的数组 ones_arr = np.ones_like(arr) print(ones_arr)
输出结果为:
© 2025 Copyright: kuaikuaixuan.com
京ICP备14015652号-3
网址导航